Search for New Industrial Oils. VII."

F. R. EARLE, I. A. WOLFF, and C. A. GLASS, Northern Regional Research Laboratory,² Peoria, Illinois; and QUENTIN JONES, Crops Research Division³ Beltsville, Maryland

Abstract

Seed oils from 37 plant species in 18 families have been analyzed for fatty acid composition by the isomerization method. The variability encountered is evidenced by the range in content of component acids: from 0-23% for apparent linolenic acid, from 8-74% for apparent linoleic acid, and from 2-88% for apparent oleic acid. Dimorphecolic acid has been found to the extent of approximately 60% in a second species of Dimorphotheca, D. pluvialis (L.) Moench, and in the closely related species, Osteospermum ecklonis (DC.) T. Norl. O. spinescens Thunb. contained instead 30% of a conjugated triene, presumably the same as the 8,10,12-octadecatrienoic reported from the related Calendula officinalis L. Oils rich in monoenoic acids are mostly in the Umbelliferae and Araliaceae and presumably contain petroselinic acid as well as oleic.

Introduction

IN CONTINUATION of our search for useful new oils, analyses have been performed on seed oils of 37 species in 18 plant families. Fatty acid composition was reported previously for only six of these oils, although selected characteristics have been published for several more.

Sample procurement and methods of analysis were as described in Parts I (4) and IV (3) of this series.

Results and Discussion

Analytical data on the seed samples and derived oils are listed in Table I.

Conjugated Trienes and Hydroxy Dienes. Oils of greatest chemical interest in this group are from four closely related species of Compositae. Oils from Dimorphotheca pluvialis [31]⁴ and Osteospermum ecklonis [34] contain a conjugated diene, react with HBr, and show infrared absorption due to hydroxyl. They apparently contain dimorphecolic acid, previously isolated from *Dimorphotheca sinuata* DC. (D. aurantiaca Hort.) and characterized as 9-hydroxy-trans, trans-10, 12-octade cadienoic acid (11). Oils from Osteospermum spinescens [35] and Calendula officinalis [29] contain conjugated triene rather than diene, show no infrared absorption for hydroxyl, and react with only minor amounts of HBr. The triene in calendula oil has been reported to be 8,10,12-octadecatrienoic acid (2,8). Dimorphecolic acid dehydrates readily to give a conjugated triene, presumably with 8,10,12 unsaturation. The close botanical relationship between the three genera and the probable chemical relation between the diene and triene suggest that the conjugated triene in oil from Osteo-

¹ Presented at the AOCS meeting in St. Louis, Mo., May 1-3, 1961. ² A laboratory of the Northern Utilization Research and Development Division, Agricultural Research Service, U.S.D.A.

³ Agricultural Research Service, U.S.D.A.

spermum spincscens will prove to be the same as the triene in calendula oil. Discovery that each of these acids occurs as a major component in more than one species provides a wider range of genetic material for developing plant types suitable for commercial production.

Other HBr-Reactive Acids. Many other oils react with hydrogen bromide under the conditions prescribed by the AOCS for determination of oxirane oxygen. Matricaria capensis L. [33], a composite, has 11% of HBr-absorbing acid (calculated as C_{18} epoxy acid). Since it also contains some conjugated diene structure, part of the HBr reaction is probably attributable to dimorphecolic acid, and the remainder, to epoxy acid. The occurrence of the two types of acids together has been demonstrated previously (9, 10). Oil from Malva parviflora L. [11] contains 13% of HBr-reactive acids. It gives a positive Halphen test, and the reactive acids are presumed to be primarily cyclopropenoid (10,12) although there may be epoxy acids present as in other mallows (7).

Other Hydroxy Acids. Oil from an Ipomoea [20] of an unidentified species shows hydroxyl absorption in the infrared. Chemical analysis of the methyl esters from the oil indicates hydroxyl equivalent to 40% of a C₁₈-hydroxy acid. Characterization of the hydroxy components is in progress.

Trienoic Acids. The highest concentration of "apparent linolenic" acid (ca. 23%) in the oils reported here occurs in a legume, Brongniartia alamosana Rydb. [5]. The 11% apparent linolenic acid in oil from Matricaria capensis [33], Compositae, is unusually high for this family.

Dienoic Acids. "Apparent linoleic" acid occurs in three oils in concentrations above 70% [4,13,27]. These oils show evidence of only traces of linolenic acid. Anthemis tinctoria L. [27] oil contains 6% of HBr-absorbing acids.

Monoenoic Acids. Five oils contained more than 65% monoenoic acid. That from Melia azedarach L. [8] has been reported previously (1,5,6) to contain oleic acid, but the percentage in this sample is much higher than in earlier samples. The other four oils [14-16,18] occur in the families Araliaceae and Umbelliferae, which are known to produce petroselinic acid. Of these, oil from Hedera helix L. has been reported to contain 62% of petroselinic acid and 20% of oleic acid, and that from Pastinaca sativa L. to contain, respectively, 46% and 32% (5,6). The monoenoic acid reported here probably consists of both oleic and petroselinic acids, but the analytical methods used do not differentiate between them. Our analyses indicate marked variability in Pastinaca oils [17,18].

Keto Acids. A qualitative test for earbonyl was positive for 10 of the seed oils [3,5,7,14-18,29,30]. Quantitative colorimetric analyses and calculation as a C₁₈-keto acid showed, however, only 4% in [29],

⁴ Numbers in brackets identify oils in Table I.

TABLE I	Analytical Data on Seeds and Derived Oils
---------	---

		Component	nent		Protein			Pafrae.			T BTTY A	actu content of ont	TO 101		
0		analy	zed		content		Saponifi-	tive	Triene as	Gie acid		arid			нвг
Source	Common name	Plant part (see key)	wt./ 1,000, g.	content % D.B.	$^{(NX)}_{6.25)}$	I.V. wijs.	cation value	index n ⁴⁰ D	Nonconj.,	Conj.,	8 .	mj.,	Monoene as oleic, %	Satu- rates, %	uptake as Cis epoxy acid, %
Liliales Lilialese 1. Notina texana S. Wats 2. Yucca peninsularis McKelvey		44	12 30	280 280	15	130 131	185 187	1.4664 1.4678	00	00	564	10 H	334 294	× م	6169
Moraceae 3. Humulus scandens (Lour.) Merr Rosales	Hop	A	18	31	24	146	192	1.4696	13	0	54	0	15	14	0.5
Saxifragaceae 4. Deutzia scabra Thunb.		A	0.1	34	26	148	190	1.4688	0.6	0	74	0	13	æ	0.3
Legumnosas 5. Brongniartia alamosana Rydh. 6. Coursetia glandulosa A. Gray. 1. Willardia mexicana (S. Wats.) Rose	Baby bonnets	444	10 16 20	34 34	50.1 50.1 50	129 106 137	166 186 175	$1.4726 \\ 1.4652 \\ 1.4735$	2123	000	15 15		37 50	818 818	0.5 1 0.4
Meliaceae B. Melia azedarach L. Sapis - Melia azedarach L.	Chinaberry	V	21	45	30	63	i	1.4669	0	*	17	*	70	6	0.3
Anacardiaccae 9. Rhus radicans L	Poison sumac	В	16	22	11	53	214	1.4546^{1}	0.4	0	24	0	10	62	0.2
Malvaceae 10. Abutilon incanum (Link) Sweet 11. Malva cf. parvifiora L		BA	4 29	15 11	24 16	122 124	197 172	1.4676 1.4668	0 0.8	0 0.1	59	00	17 29	19 13	132
laenceae aphre mezereum L	February daphne	υ.		65	24	123	184	1.4668		0	42	c	46	9	0.2
Unbellales Unbellales 14. Acanthopanax spinosum Miq		V V	0 0 n	::: 2:: 2::	35 37	134	179 184	1.4679 1.4648	0.7	0 0	71		¢1 00	21	0.3
15. Hedera helix LUmbelliferae	English ivy	ĸ	20	10	16	67	184	1.4630	9.0	0	; 20	0	- 80	12 12 1	0.4
 I. Truchymene caerulea (DC.) K. Grah Pastimeca sativa L	Blue laceflower Parsnip Parsnip	<¤¤	NN :	563	22 16	119 119 93	182 200 204	1,4632 1.4680 1.4671	0.00	°*:*:	α1 <u>-</u> 36	°	0 % % 9 % % 9 %	711 10	0.2
Aporynacene 19. <i>Thevetia thevetioides</i> (H.B.K.) K. Schum Polemoniales		Ð	1800	62	18	83 83	187	1.4611	0	0	14	¢	6.1	17	0.3
Convolvulaceae 20. <i>Iponovea</i> sp		V	144	18	26	84	190	1.4674^{3}	122	0	121	0	201	464	en
21. Phloz paniculata L.	Phlox	V	6	54	41	121	173	1.4676	22	0	34	6.0	55	62	1
Soundarcue 201 Datura metel I. 23. Nofunum nodiflorum Jacq		44	$14.1 \\ 0.8$	510 710	13 14	109 138	188 180	1.4662	0.5	00	30 65	• •	6 0 10 0	6 10	0.3
Isignoniaceae 24. Tubebuia palmeri Rose	Trumpet tree	c	113	36	23	68	176	1.4601	0.4	- c	18	- c	68	00 67	, c
Martynaceae D. P. P. 1998 Campanulales Campanulales		V	20	36	26	115	178	1.4650	0	0	36	0 0	22	5 4	. 0
Compositue 26. Automorris atternifolia (L.) DC. 27. Anthemis tinctoria var. Kelwayi. 28. Bidensi frondosa L 29. Coreopsis tanceadiata L 31. Overenskotkoen oluvrisks (1.) Montch	Golden camomile Pot marigold Deix Joier	AUAAU-	vo∺∞∞e) <	2 2 8 4 H 5 0 2 4 2 5 5	4100010 004000	123 153 158 128	176 176 189 189	1,4676 1,4699 1,4669 1,4998 1,4689	0.44 0.32 250	0 43 0.1	28 90: • • • • • • • • • • • • • • • • • • •	5. 00000	5.85 ⁻ .91 9.5591	12 12 12 12 12 12 12 12 12 12 12 12 12 1	
 Dornovictum caucasticum Bieb. Matricaria caucasticum Bieb. Matricaria caucasticum Bib. Osteospermum caria acone Durin. 	Leopards bane Wild camomile	<<¤<<	00 00 00 00	0 -1 38 G	27913 7913	135	187 180 	1.4728 1.4709		0000 000 000	1094 1073	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	266 11	*.65 0 [*]	35 411 - 35
36. Rudheekia hirte Luococce 37. Lagetes erecta L	Blackeyed susan African marigold	422 A.	*0.4 4.7	00; 00;	970 870 870	141 141 8 11	182	1.4702 1.4646	0.2		67	040	4.40	*:18	01 F- 01

¹ At 50C. ² Less than 1% tetraene. ⁴ At 60C. ⁴ Method not applicable or questionable. Key: A, Seed. B, Seed plus pericarp. C, Seed minus seed coat. D, Seed plus pericarp plus calyx. mentioned.

2% in [18], and no more than 1% in the remainder. Other Acids. At least nine oils are unsuited for analysis by the isomerization method. Four [29,31, 34,35] contain enough preformed conjugation to cast doubt on the measurement of conjugation after isomerization. Three [8,17,18] contain constituents that absorb ultraviolet light and prevent measure-ment of preformed conjugation. These constituents were lost during the high-temperature isomerization and may have been essential oils. One [15] gave a negative value for saturated acids. The final oil in

Other listed oils not specifically discussed contain varying proportions, within the usual ranges, of the common fatty acids.

this group is from the *Ipomoea* species [20] already

REFERENCES

Cattaneo, P., G. K. de Sutton, and M. H. Bertoni, Anales asoc. quim. Argentina, 48 (2), 101-107 (1960).
 Chisholm, M. J., and C. Y. Hopkins, Can. J. Chem., 38, 2500-2507 (1960).
 Earle, F. R., C. A. Glass, Glenda C. Geisinger, I. A. Wolff, and Quentin Jones., JAOCS, 37, 440-447 (1960).
 Earle, F. R., E. H. Melvin, L. H. Mason, C. H. VanEtten, I. A. Wolff, and Quentin Jones, Ibid., 36, 304-307 (1959).
 Eckey, E. W., "Vegetable Fats and Oils," New York, Reinhold Publishing Corporation, Inc., 1954.
 Hilditch, T. P., "The Chemical Constitution of Natural Fats," New York, John Wiley and Sons, Inc., 1956.
 Hopkins, C. Y., and Mary J. Chisholm, JAOCS, 37, 682-684 (1960).

7. Hopkins, C. Y., and Mary J. Chisaona, C. 1956, 777-778.
8. McLean, J., and A. H. Clark, J. Chem. Soc., 1956, 777-778.
9. Morris, L. J., R. T. Holman, and K. Fontell, JAOCS, 37, 232-327 (1960).
10. Smith, C. R. Jr., M. C. Burnett, T. L. Wilson, R. L. Lohmar, and I. A. Wolff, Ibid., 37, 320-323 (1960).
11. Smith, C. R. Jr., T. L. Wilson, E. H. Melvin, I. A. Wolff, J. Am. Chem. Soc., 82, 1417-1421 (1960).
12. Smith, C. R. Jr., T. L. Wilson, and K. L. Mikolajczak, Chem. and Ind. (London), 1961, 256-259.

[Received January 26, 1962]

Report of the Literature Review Committee

Annual Review of the Literature on Fats. Oils, and Detergents. Part II

V. MAHADEVAN, University of Minnesota, The Hormel Institute, Austin, Minnesota

DETERIORATION OF FATTY MATERIALS

The majority of papers published on this subject dealt with the theoretical and practical aspects of autoxidation and its prevention. A significant step was made in the elucidation of many of the products of autoxidation of various lipids subjected to different reaction conditions. Increased effort in the identification of reaction products, and in the development of the required isolation and analytical procedures, should result in a substantial clarification of the mechanisms and kinetics of autoxidation within the next few years.

Papers on the nutritional aspects of oxidized fats are not included, as this literature is adequately covered in the "Nu-trition, Physiology and Biochemistry" section. This section is further restricted to edible materials except for those cases where the investigations and findings on similar materials were considered significant.

REVIEWS

General reviews appeared on the development and inhibition

of oxidative rancidity in foods (Dugan, Food Tech. 15, 10), autoxidation and analysis of oxidized fats (Debrus, Riv. ital. sostanze grasse 38, 229), and recent problems in rancidity and oxidation of fats and oils (Shimamura, Yukagaku 10, 129). The following reviews were presented at a symposium on flavor chemistry (Proceedings Flavor Chemistry Symposium - 1961. Campbell Soup Company, Camden, New Jersey): Kummerow, "Introductory remarks - fats and oils"; Evans, "Chemical changes accompanying flavor deterioration of vegetable oils"; Privett, "Some observations on the course and mechanism of autoxidation and autoxidant action"; Chang, "Isolation and characterization of reversion flavor of soybean oil"; and Jacobson, "Some aspects of chemical assessment of fat and "Another symposium devoted avalusively to the oil flavors." Another symposium devoted exclusively to the oxidative deterioration of food lipids was held at Oregon State University. Extensive consideration was given to the mechanisms and products of lipid oxidation, factors affecting lipid oxidation, autoxidation in foods, and the biological sig-nificance of autoxidized lipids. These proceedings will be published by the AVI Publishing Co., Inc., Westport, Conn.

TABLE OF CONTENTS

PART I

A. INTRODUCTION

- B. SOAPS, SURFACTANTS, AND DETERGENTS-
 - J. C. Harris

Manufacture (processes, raw materials, synthesis, compositions); Analysis; Physical Characteristics; Perform-ance and Use Testing

C₁. Products (excepting detergents)—J. E. Jackson Edible, Pharmaceutical, and Cosmetic Fat Products; Emulsifiers; Esters, Acids, Alcohols and Other Fat De-rivatives; Fatty Materials Used in Textile and Paper Treatment, Water-Proofers, Corrosion Inhibitors, Waxes,

Defoamers, Well-Drilling Fluids, Incendiary Preparation. Agricultural and Miscellaneous; Fatty Material in Lu-brication, Metal-Working, and Textile Oiling

- C₂. PRODUCTS (excepting detergents)—J. W. Horner Drying Oils, Paints, Resins, and Plasticizers
- D. PRODUCTION PROCESSES-R. G. Krishnamurthy Extraction; Refining; Bleaching; Deodorization, Winterization, and Fractionation; Hardening; Interesterifica-tion; Partial Esters and Fat Splitting; Vegetable and Animal Fats and Oils; By-Products

PART II

E. DETERIORATION OF FATTY MATERIALS-

V. V. Studer

Reviews; Oxidative Stability Tests (in fats and oils and in fats in complex systems); Antioxidants (evaluation and analysis, effect on stability); Prooxidants; Prod-uets of Autoxidation; Autoxidation Mechanism and Theory

F. Composition and Characteristics-

E. G. Hammond

Official Methods and Reviews; Analysis of Fat Sources; Grading and Vitamin Tests; Analysis of Lipid Classes; Composition and Characteristics; Physical Properties; Detection of Adulteration

- G. NUTRITION, PHYSIOLOGY, AND BIOCHEMISTRY-
 - L. N. Norcia and J. D. Evans

Nutrition; Physiology (digestion, intestinal absorption, and excretion, lipid transport and body fats, lipide metabolism in the intact animal); Biochemistry (analytical and methodology, lipid biosynthesis and bio-oxidation, phosphoglycerides, phosphoinositides, sphingolipids, and other complex lipids, steroids, lipoproteins); Lipids in Diseased States; Lipids in Microorganisms, Plants and Insects

H. BOOK REVIEW